

Draft 2024 Flexible Capacity Needs and Availability Assessment Hours Technical Study

Clyde Loutan Principal, Renewable Energy Integration

Hong Zhou Lead Market Development Analyst, Short-Term Forecasting

Jessica Stewart Senior Energy Meteorologist, Short-Term Forecasting

April 26, 2023

Discuss the assumptions, methodology, and draft results of the monthly flexible capacity requirement and Availability Assessment Hours Technical Study.

Specifically

Calculating monthly flexible capacity requirements for all LRAs within the ISO footprint for RA compliance year 2024 and advisory requirements for compliance years 2025 and 2026

Agenda / Overview

Time	Торіс	Presenter
10:00 – 10:05	Welcome, housekeeping reminders	Yelena Kopylov-Alford
10:05 – 10:35	 Background Process review Expected build out from all LSEs (CPUC jurisdictional and non-jurisdictional) Load, wind and solar profiles Load error correction methodology (slides 16-19) Calculate three-hour net load upward ramps Add the larger of either the spinning reserve portion of contingency reserves or the most severe contingency Calculate monthly Flexible Capacity requirement 	Clyde Loutan Jessica Stewart Clyde Loutan
10:35 – 10:55	Preliminary Results (slides 32-41)	Hong Zhou
10:55 – 11:10	Overview of methodology used for system/local availability assessment hours (slides 42-54) 2024 availability assessment hours 2025-2026 draft availability assessment hours	Jessica Stewart
11:10 – 11:15	Next Steps	Jessica Stewart
Califor	nia ISO 2023 CAISO - Public	Page 3

Each LSE Scheduling Coordinator shall make a year-ahead and month-ahead showing of flexible capacity for each month of the compliance year

Resource Adequacy (RA)

- Ensure LSEs contract for adequate capacity to meet expected flexible capacity needs
- Year ahead: LSEs need to secure a minimum of 90% of the next years monthly needs
- Month ahead: LSEs need to secure adequate net qualified capacity to serve their peak load including a planning reserve margin and flexible capacity to address largest three-hour net load ramps plus contingency reserves
- All resources participating in the ISO markets under an RA contract will have an RA must-offer-obligation
- Required to submit economic bids into the ISO's real-time market consistent with the category of flexible capacity

The ISO used the following data to determine the flexible capacity needs

- CEC's IEPR demand forecast for 2024 through 2026
- LSE SCs updated renewable build-out for 2022 through 2026
- The Analysis of Flex Capacity Needs included:
 - Existing VERs capacity
 - Expected installed capacity by technology and expected operating date (e.g. Solar thermal, solar PV tracking, solar PV non-tracking, estimate of behind-the-meter solar PV, co-located and renewable components of hybrids) for all variable energy resources under contract
 - Operational date or expected on-line date
 - Dynamically scheduled resources located outside ISO's BAA

Expected co-located renewable buildout through December 2026 based on LSE's submittal

Co-Located resources were included in the flexible needs assessment

For more details on hybrid and co-located resources, visit the stakeholder page: https://stakeholdercenter.caiso.com/StakeholderInitiatives/Hybrid-resources

Expected hybrid renewable buildout through December 2026 based on LSE's submittal

Hybrid resources were included in the flexible needs assessment

For more details on hybrid and co-located resources, visit the stakeholder page: https://stakeholdercenter.caiso.com/StakeholderInitiatives/Hybrid-resources

Expected LSEs rooftop solar PV capacity vs. CEC's estimated production

Summary of LSEs submittal showing the expected capacity at the end of each year

Resource Type	Existing 2022	Expected 2023	Expected 2024
ISO Solar PV	14,389	16,534	17,879
ISO Solar Thermal	860	858	858
ISO Wind	4,492	4,641	4,912
Co-Located Resources (Wind)	0	0	0
Co-Located Resources (Solar)	2,850	4,551	5,755
Hybrid Resources (Wind)	0	0	0
Hybrid Resources (Solar)	221	336	534
Total Variable Energy Resource Capacity within the ISO	22,812	26,920	29,937
Cumulative Non ISO Wind/Solar Resources that's Dynamically Scheduled into the ISO	1,884	1,986	1,991
Total Internal and Dynamically Scheduled VERs in Flexible Capacity Needs Assessment	24,696	28,906	31,928
Incremental New VERs Additions Each Year (Included in Flexible Capacity Needs Assessment)		4,210	3,022
Maximum behind-the-meter Solar PV Production in the CEC's Forecast		12,429	13,395
Cumulative behind-the-meter Solar PV Capacity reported by LSEs	13,249	14,312	15,565

The ISO flexibility capacity assessment is based on current LSE's RPS build-out data

- Uses the most current data available for renewable build-out obtained from all LSE SCs
 - The SC for each *LSE* in the CAISO BAA [to identify] each *wind and* solar resource... that is owned, in whole or in part, by the LSE, or under contractual commitment to the LSE or the Load-following MSS LSE, for all or a portion of its capacity
- For new renewable installation, scale 2022 actual production data based on the expected installed capacity in subsequent years
- Generate net-load profiles for 2024 through 2026
 - Generate load profiles for 2024 through 2026
 - Generate solar profiles for 2024 through 2026
 - Generate wind profiles for 2024 through 2026

The ISO will use the CEC's 1-in-2 IEPR forecast to develop the monthly flexible capacity

- CEC IEPR Load Forecast
 - <u>https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2022-integrated-energy-policy-report-update-2</u>
 - Title of File: "CED 2022 Hourly Forecast CAISO Planning Scenario"
 - CAISO will be using Managed Net Load (column V) within the spreadsheet

Managed Net Load (col V) = Baseline Net Load (col U)
 + AAEE (Col Q) + AAFS (Col R)

- Baseline Net Load (col U) = Baseline Consumption (col N)
 - BTM PV (col N)
 - BTM Storage Res (col O)
 - BTM Storage NonRes (col P)
- Baseline Consumption (col N) = unadjusted consumption (col E)
 - + Pumping (col F)
 - + climate change (col H)
 - + light EV (col I)
 - + medium heavy EV (col J)
 - + TOU impacts (col K)
 - + other adjustments (col L)

Building expected one-minute load profile requires actual 2022 hourly and one-minute data and CEC's hourly forecast

Hourly load forecast to one-minute load forecast

- Used 2022 actual one-minute load data to build one-minute load profiles for subsequent years
- Scaled the hourly CEC load forecast value of each hour into one-minute forecast data using a smoothing equation looking at the differences between the forecasted year and the 2022 one-minute actuals.

2024 Load One-Minute Forecast

- 2024 L_{CECfcst_1-min} = 2022 L_{Act_1-min} + X
 - Where X = Interpolated 1-min profile from the difference

(2024 L_{CECfcst_hourly} - 2022 L_{actual_hourly})

2025 Load One-Minute Forecast

- 2025 $L_{CECfcst_1-min} = 2022 L_{Act_1-min} + X$
 - Where X = Interpolated 1-min profile from the difference

(2025 L_{CECfcst_hourly} - 2022 L_{actual_hourly})

*See slide 8 for more graphs showing steps to calculate

A load error correction coefficient was applied to the one-minute load forecast

- For the 2024 study, the ISO has included a load error correction factor of to the CEC IEPR one-minute load forecast
- This was calculated by:
 - Comparing the averaged ISO load ramp for 2021-2022 to the 2021 and 2022 2 year lagged IEPR forecast
 - i.e. the 2019 forecast for 2021 and the 2020 forecast for 2022 as these were the forecasts used for the 2021 and 2022 flexible capacity analyses
 - Finding the average load ramp error for each month, then taking the average across all months
- Found that the three-hour IEPR load ramp forecast was overforecast by an average of 24.3% across 2021 and 2022

A load error correction coefficient was applied to the one-minute load forecast

- A load correction coefficient of .757 was calculated •
 - The annually averaged load ramp error between the 2021-2022 ISO actuals and IEPR forecast

CEC Forecast vs ISO Actual Maximum Three-Hour Load Ramp: 2021 and 2022 Average

Without the load error correction, the net load ramps for 2024-2026 were overstated

- Error correction was only applied to the one-minute load forecast used to calculate the three-hour ramp forecast for 2024-2026
 - It was **not** applied to the monthly peak in the flexible capacity calculation or for determining MOO or AAH

2024 Three-Hour Ramp Forecast with and without Load Error Correction

Updated methodology using load error correction reduces forecast compared to preliminary forecast

Change in 2024 Three-Hour Net Load Ramp Forecast Over Time

Net-load is a NERC accepted metric¹ for evaluating additional flexibility needs to accommodate VERs

- Net load is defined as load minus wind and solar power production
- Net load variability increases as more and more wind and solar resources are integrated into the system
- The monthly three-hour flexible capacity need equates to the largest upward change in net load when looking across a rolling three-hour evaluation window
- The ISO dispatches flexible resources (including renewable resources with energy bids) to meet net load
- 1 NERC Special Report Flexibility Requirements and Metrics for Variable Generation: Implications for System Planning Studies, August 2010. <u>https://www.nerc.com/files/IVGTF_Task_1_4_Final.pdf</u>

The flexible capacity methodology is expected to provide the ISO with sufficient flexible capacity

Methodology

Flexible Req_{MTHy} = Max[(3RR_{HRx})_{MTHy}] + Max(MSSC, 3.5%*E(PL_{MTHy})) + ε

Where:

 $Max[(3RR_{HRx})_{MTHy}] = Largest three-hour contiguous ramp starting in hour x for month y$

E(PL) = Expected peak load

 $MTH_y = Month_y$

MSSC = Most Severe Single Contingency

 ϵ = Annually adjustable error term to account for load forecast errors and variability. ϵ is currently set at zero

Monthly Three-Hour upward ramps and total flexible capacity requirements for 2024

📀 California ISO

Expected maximum monthly three-hour upward ramps vs. 2022 and 2023 actuals

Maximum Monthly Three-Hour Upward Ramps

Actual maximum monthly flexible capacity for 2021 and 2022 vs. forecast flexible capacity for 2023 through 2025

Maximum Flexible Upward Capacity

2020 forecast of 2022 three-hour ramps vs. actual with/without curtailments

📀 California ISO

3-hour upward ramps can be more than 50% of the daily peak demand, indicating the need for faster ramping resources

2020, 2021 & 2022: Higher levels of curtailments typically occur during the spring months

📀 California ISO

2020, 2021 & 2022: Higher levels of curtailments typically occur between sunrise and sunset

2023 CAISO - Public

Example of actual net-load variability for seven random days in March 2022

The actual net load and 3-hour ramps are years ahead of the ISO's original estimate primarily due to under forecasting rooftop solar PV installation

Forecasted monthly 2024 ISO system-wide flexible capacity needs

Forecasted monthly 2024 ISO system-wide flexible capacity needs*

*Flexibility Requirement_{MTHy}= Max[(3RR_{HRx})_{MTHy}] + Max(MSSC, 3.5%*E(PL_{MTHy})) + ϵ

🍣 California ISO

Preliminary Results

Hong Zhou Lead Market Development Analyst, Short-Term Forecasting

Jessica Stewart Senior Energy Meteorologist, Short-Term Forecasting

Components of the flexible capacity needs

Month	Load contribution 2024	Wind contribution 2024	Solar contribution 2024	Total percent 2024
January	29.42%	-3.49%	-67.09%	100%
February	30.17%	0.78%	-70.61%	100%
March	25.39%	-0.94%	-73.68%	100%
April	28.49%	2.89%	-74.41%	100%
Мау	28.10%	-4.22%	-67.68%	100%
June	23.82%	-4.53%	-71.65%	100%
July	18.95%	4.58%	-85.64%	100%
August	20.35%	0.37%	-80.02%	100%
September	18.11%	-3.20%	-78.69%	100%
October	30.50%	-0.23%	-69.27%	100%
November	31.65%	-0.70%	-67.65%	100%
December	33.82%	-0.80%	-65.38%	100%

Δ Load $-\Delta$ Wind $-\Delta$ Solar = 100

Flexible capacity categories allow a wide variety of resources to provide flexible capacity

- <u>Category 1 (Base Flexibility)</u>: Operational needs determined by the magnitude of the largest three-hour secondary net load ramp
- <u>Category 2 (Peak Flexibility)</u>: Operational need determined by the difference between 95 percent of the maximum three-hour net load ramp and the largest three-hour secondary net load ramp
- <u>Category 3 (Super-Peak Flexibility</u>): Operational need determined by five percent of the maximum three-hour net load ramp of the month

Seasonal breakout of flexible capacity needs

	Act	ual Contributi	ons	Sea	sonal Contribu	ution		
		Unadjusted		Adjusted				
Month	Base Flexibility	Peak Flexibility	Super-Peak Flexibility	Base Flexibility	Peak Flexibility	Super-Peak Flexibility		
January	28%	67%	5%	27%	68%	5%		
February	21%	74%	5%	27%	68%	5%		
March	29%	66%	5%	27%	68%	5%		
April	31%	64%	5%	27%	68%	5%		
Мау	28%	67%	5%	37%	58%	5%		
June	36%	59%	5%	37%	58%	5%		
July	41%	54%	5%	37%	58%	5%		
August	44%	51%	5%	37%	58%	5%		
September	37%	58%	5%	37%	58%	5%		
October	28%	67%	5%	27%	68%	5%		
November	23%	72%	5%	27%	68%	5%		
December	27%	68%	5%	27%	68%	5%		

Increased weighting observed in Peak Category

Month	2021	2022	2023	2024
January	57.30%	55.06%	62.74%	68.11%
February	57.30%	55.06%	62.74%	68.11%
March	57.30%	55.06%	62.74%	68.11%
April	57.30%	55.06%	62.74%	68.11%
Мау	45.62%	45.39%	49.28%	57.75%
June	45.62%	45.39%	49.28%	57.75%
July	45.62%	45.39%	49.28%	57.75%
August	45.62%	45.39%	49.28%	57.75%
September	45.62%	45.39%	49.28%	57.75%
October	57.30%	55.06%	62.74%	68.11%
November	57.30%	55.06%	62.74%	68.11%
December	57.30%	55.06%	62.74%	68.11%

Total flexible capacity needed in each category – seasonally adjusted

Total Flexible Capacity Needed in Each Category - Adjusted

CPUC jurisdictional flexible capacity allocation by flexible capacity category

Draft CPCC Flexible Capacity Allocation by Category

Start time of three-hour net load ramp to evaluate seasonal must offer obligations

	Three Hour Net Load Ramp Start Hour								
Month	HE14	HE15	HE16	HE17	HE18				
January	4	27							
February		22	6						
March		2	15	14					
April				29	1				
Мау				30	1				
June				26	4				
July			2	29					
August		1	7	23					
September		1	25	4					
October		10	21						
November	10	19	1						
December	4	27							

Seasonal must-offer obligations for peak and superpeak flexible capacity

• Recommended must-offer obligation hours in hour ending

	Jan	Feb	Mar	Apr	Mar	Jun	Jul	Aug	Sep	Oct	Nov	Dec
HE15-HE19	x	х									x	х
HE16-HE20									x	x		
HE17-HE21			x	x	x	x	x	x				

Review of preliminary assessment results

- Flexible Capacity need is largest in January through June
 - Flexible capacity makes up a greater percentage of resource adequacy needs during the off-peak months
 - Increase almost exclusively caused by three-hour ramp, not increase in peak load
- Peak category has heavier weight this year
- The CEC IEPR hourly demand forecast, growth of behind-the-meter solar PV, and PV contributes to the larger flexible capacity requirements
- Using the ISO flexible capacity contribution calculation majority of threehour net load ramps are attributable to CPUC jurisdictional LSEs
- The Peak and Super-Peak MOO hours have not changed from the 2022 study (information below is in Hour Ending)
 - November through February: HE 15- HE 19 (2:00 p.m. to 7:00 p.m.)
 - March through August: HE 17 HE 21 (4:00 p.m. to 9:00 p.m.)
 - September through October: HE 16- HE 20 (3:00 p.m. to 8:00 p.m.)

AVAILABILITY ASSESSMENT HOURS

Availability assessment hours: Background and purpose

- Concept originally developed as part of the ISO standard capacity product (SCP)
 - Maintained as part of Reliability Service Initiative Phase 1 (i.e. RA Availability Incentive Mechanism, or RAAIM)
- Determine the hours of greatest need to maximize the effectiveness of the availability incentive structure
 - Resources are rewarded for availability during hours of greatest need
 - Hours determined annually by ISO and published in the BPM
 - See section 40.9 of the ISO Tariff

Methodology overview of system/local availability assessment hours

- Used CEC IEPR data described in previous slides to obtain:
 - Hourly Average Load
 - By Hour, by month
 - Years 2022-2026
 - No adjustments made to CEC IEPR for AAH analysis
- Calculated:
 - Top 5% of Load Hours within each month using an hourly load distribution
 - Years 2024 2026
- Last year the ISO proposed the addition of Spring season

The ISO proposes adding May to the spring AAH season

- Last year the ISO proposed the addition of a spring season with AAH hour-ending 18-22
- Load actuals still support the months of March and April having a later top 5% of load hours, with the addition of May

	Hour	7	8	9	10	11	13	14	15	16	17	18	19	20	21	22	23
	Jan											10	18	7	2		
	Feb	2	2									2	17	6	3	1	
	Mar											2	12	16	5	2	
	Apr							1	2	2	2	3	4	8	8	4	2
Ξ	May							1	1	2	3	4	6	8	8	3	1
I N	Jun									4	7	8	7	7	3		1
Σ	Jul								1	3	5	9	10	6	3		
	Aug									3	6	13	10	3	2		
	Sep						1	2	3	6	6	6	5	4	3		
	Oct									4	6	9	9	8	1		
	Nov				1	1						13	13	8			
	Dec		1	1								11	11	7	5	1	
	Grand Total	2	3	1	1	1	1	4	7	24	35	90	122	88	43	11	3

<u>Month</u>	<u>Season</u>
Jan	winter
Feb	winter
Mar	spring
Apr	spring
May	spring
Jun	summer
Jul	summer
Aug	summer
Sep	summer
Oct	summer
Nov	winter
Dec	winter

CEC forecast and previous actuals still indicate a shift in top load hours for March and April, as well as May

Apr 2020-2022 Actuals and 2024, 2026 Forecast

May 2020-2022 Actuals and 2024, 2026 Forecast

Mar 2020-2022 Actuals and 2024, 2026 Forecast

Spring Season 2024 top 5% of load hours (HE)

Spring Season: Frequency of top 5% of Load Hours by Month (Hour Ending)

🍣 California ISO

Summer seasonal load shapes and proposed AAH

Jul 2020-2022 Actuals and 2024, 2026 Forecast

Sep 2020-2022 Actuals and 2024, 2026 Forecast

Aug 2020-2022 Actuals and 2024, 2026 Forecast

California ISO

2023 CAISO - Public

Page 46

Summer seasonal load shapes and proposed AAH cont.

Oct 2020-2022 Actuals and 2024, 2026 Forecast

2023 CAISO - Public

Page 47

Summer Season 2024 top 5% of load hours (in HE)

Summer Season: Frequency of top 5% of Load Hours by Month (Hour Ending)

Winter seasonal load shapes and proposed AAH

Jan 2020-2022 Actuals and 2024, 2026 Forecast

Nov 2020-2022 Actuals and 2024, 2026 Forecast

Feb 2020-2022 Actuals and 2024, 2026 Forecast

Dec 2020-2022 Actuals and 2024, 2026 Forecast

🍣 California ISO

2023 CAISO - Public

Page 49

Winter Season 2024 top 5% of load hours (HE)

Winter Season: Frequency of top 5% of Load Hours by Month (Hour Ending)

Availability assessment hours draft recommendation

Winter and Summer Season Draft Recommendation

Jan-Feb, Nov-Dec; Jun-Oct (also includes May for 2023)

Spring Season Draft Recommendation

Mar-Apr for 2023; Mar-May for 2024-2026

Year	Start	End	Year	Start	End
2023 (Final)	HE 17	HE 21	2023 (Final)	HE 18	HE 22
2024 (Draft)	HE 17	HE 21	2024 (Draft)	HE 18	HE 22
2025 (Estimate)	HE 17	HE 21	2025 (Estimate)	HE 18	HE 22
2026 (Estimate)	HE 17	HE 21	2026 (Estimate)	HE 18	HE 22

Reliability Requirements; Section 7 – BPM Updates Needed

2024 System and Local Resource Adequacy Availability Assessment Hours

Analysis employed: Top 5% of load hours using average hourly load

<u>Spring: March 1 – May 31</u> Availability Assessment Hours: 5pm – 10pm (HE18 – HE22)

Summer: June 1 - October 31 Availability Assessment Hours: 4pm – 9pm (HE17 – HE21)

<u>Winter: November 1 - February 28</u> Availability Assessment Hours: 4pm – 9pm (HE17 – HE21)

2024 Flexible Resource Adequacy Availability Assessment Hours and must offer obligation hours

Flexible RA Capacity Type	Category Designation	Required Bidding Hours	Required Bidding Days
January – February November – December			
Base Ramping	Category 1	5:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	2:00pm to 7:00pm (HE15-HE19)	All days
Super-Peak Ramping	Category 3	2:00pm to 7:00pm (HE15-HE19)	Non-Holiday Weekdays*
March – August			
Base Ramping	Category 1	5:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	4:00pm to 9:00pm (HE17-HE21)	All days
Super-Peak Ramping	Category 3	4:00pm to 9:00pm (HE17-HE21)	Non-Holiday Weekdays*
September – October			
Base Ramping	Category 1	5:00am to 10:00pm (HE6-HE22)	All days
Peak Ramping	Category 2	3:00pm to 8:00pm (HE16-HE20)	All days
Super-Peak Ramping	Category 3	3:00pm to 8:00pm (HE16-HE20)	Non-Holiday Weekdays*
California ISO		2023 CAISO - Public	Pa

Page 52

Next steps

Please use the stakeholder <u>Commenting Tool</u> to submit comments by May 10, 2023

- Published Draft Flexible Capacity Needs Assessment and Draft AAH for 2024 on April 24, 2023
- Publish Final Flexible Capacity Needs Assessment and AAH for 2024 on May 17th, 2023

Flexible Capacity Needs Assessment – 2024 Stakeholder page

Questions

Stay connected

@California_ISO

Download ISO Today mobile app

Sign up for the Daily Briefing at www.caiso.com

2023 CAISO - Public

Page 54

 Energy Matters blog provides timely insights into ISO grid and market operations as well as other industry-related news

http://www.caiso.com/about/Pages/Blog/default.aspx.

Click image below to read a recent article featured in the blog:

Subscribe to Energy Matters blog monthly summary

Appendix

Expected renewable buildout through December 2026 based on LSE's submittal

Expected wind/solar resources located outside the ISO which are contracted by LSE within the ISO

Expected dynamically scheduled wind/solar resources from external resources shown in the previous slide

CEC's (1-in-2) ISO monthly coincident peak forecast

