

Energy Storage Enhancements Straw Proposal

December 14, 2021
George Angelidis, Principal
James Lynn, Senior Advisor
Gabe Murtaugh, Storage Sector Manager

Agenda

Time	Item	Speaker
1:00-1:10	Introductions and Stakeholder Process	James Bishara
1:10-2:10	Alternate Storage Model	George Angelidis
2:10-3:00	Reliability Enhancements	Gabe, James Lynn
3:00-3:45	Co-Located Enhancements	Gabe Murtaugh
3:45-4:00	Next Steps	James Bishara

ISO Policy Initiative Stakeholder Process

We are here

Energy Storage Enhancements Timeline

Thurs 10/28: ISO's Storage Forum

Thurs 12/9: Post Straw Proposal

Tues 12/14: Stakeholder Meeting

Wed 1/12: Comments Due

Q3 2022: Board of Governors Meeting

ALTERNATIVE STORAGE MODEL

Existing Non-Generator Resource (NGR) model

- Limited Energy Storage Resource (LESR)
 - Used for energy storage resource participation
 - Support for charging (round-trip) efficiency
 - Support for State of Charge (SOC) constraints
 - Regulation Energy Management (REM)
- Dispatchable Demand Response (DDR)
 - Used for demand response participation
- Generic Non-Generator Resource (GNG)
 - Used for generic algebraic injections
 - Overlapping Resource Aggregation (ORA)
 - Dynamic exports at inter-tie Scheduling Points

Existing LESR model energy bid

Limitations of existing LESR model

- Incremental energy bids do not reflect operating cost that depends on the SOC
 - Operating cost can be higher near SOC high/low limits
- Operating range depends on the SOC
 - Upper/lower capacity limits can be lower/higher near SOC low/high limits
- Ramp rate depends on the SOC
 - Rate of discharge/charge is reduced near SOC high/low limits
- Continuous linear operation without transition constraints or cost

New proposed alternative Energy Storage Resource (ESR) model

- Incremental energy bids depend on the SOC
 - Separate hourly bids for charging and discharging
- Upper/lower capacity limits depend on the SOC
 - Registered piece-wise linear functions in Master File
- Ramp rate depends on the SOC
 - Registered step function in Master File
- Can support charge-discharge transition constraints and cost
 - Daily transition bid costs for changing operating mode
 - Registered transition times and daily transition limit
 - Transition cost included in Bid Cost Recovery (BCR)

New proposed ESR model energy bids

New proposed ESR model dynamic capacity limits

New proposed ESR model dynamic ramp rate

RELIABILITY ENHANCEMENTS

The ISO may propose to change the current rules for storage providing ancillary services

- Operators noted storage resources can run out of SOC, resulting in an inability to provide ancillary services
 - Storage schedules with ancillary services may be/become infeasible
- ISO may propose that storage resources must have an energy bid with an accompanying range of dispatch to provide ancillary services
- E.g. A +/- 100 MW storage resource, when awarded 100 MW of regulation up, will be required to also bid 100 MW of charging range, i.e. -100 MW to 0 MW
 - This will allow the ISO market software to optimally charge the storage resource if state of charge runs low

The ISO is expanding the exceptional dispatch authority to include holding state of charge

- Traditional exceptional dispatch for generation is to move to a specific MW target
 - Compensation is at the higher of prevailing prices or bids
- Operators may desire to exceptionally dispatch storage to charge and then have them hold that state of charge
 - E.g. This could be for use later (expected high loads) or it could be to stand-by in the event a contingency occurs in a local area
- ISO will develop a new form of exceptional dispatch to handle this explicitly
 - Storage resources may either be exceptionally dispatched to a specific
 MW target or to hold a specific state of charge, but not both
 - Compensation for an exceptional dispatch to hold a specific state of charge will be compensated differently than traditional exceptional dispatches

Exceptional dispatch to hold state of charge will be compensated at the opportunity cost

- Stakeholders raised concerns about requiring a storage resources to hold state of charge
 - Preventing discharge for a certain period of time precludes storage from participating in markets and earning revenues there
- ISO proposes an opportunity cost based payment for storage resources that are exceptionally dispatched to hold state of charge
 - I.e. If an ED holds state of charge for 2 hours in the day-ahead market when prices are \$60/MWh and \$100/MWh and sells energy after the exceptional dispatch at \$80/MWh, the ISO will offer compensation of an additional \$20/MWh to that resource
 - I.e. If an ED holds state of charge for 1 hour in the real-time market and prices are steady at \$50/MWh, but spike for one interval to \$100/MWh, and the resource later sells energy at \$60/MWh the ISO will compensate the resource for the one missed interval at \$40/MWh

The ISO will compensate storage, when exceptionally dispatched to hold state of charge, at a reference price

- The ISO will use existing locational marginal price profiles and actual schedules for when storage resources discharge energy to determine reference prices
 - The ISO will not 're-optimize' the market with new generating patterns
- Additional compensation will be awarded based on prices while the resource was issued exceptional dispatch to hold state of charge and reference prices

The ISO proposes enhancements to internal tools for use to ensure local reliability

- ISO local studies show how storage could be used in the planning horizon for local areas to meet reliability needs
 - Specify total amount of (4-hour) storage that can be in one local area
 - Includes requirements for charging energy and transmission capabilities
- In the operations timeframe the ISO ensures that gas resources are available for dispatch when contingencies might occur
 - This could mean starting resources in anticipation of a contingency
- Storage resources may be used to mitigate contingencies as well as gas resources
 - Storage is always on-line, but may not be economic to charge and hold state of charge
- ISO will enhance internal tools to weigh trade-offs between starting gas resources and charging storage

CO-LOCATED ENHANCEMENTS

Additional options for co-located resources that may have rules in place to prevent 'grid charging'

- ITC and property taxes resulted in developers striking contracts with LSEs that strictly prohibit charging more than the energy coming off of on-site renewables
 - Contracts that restrict operation of any resource limits the ISO's ability to manage the grid because full resource capability is not available
 - ISO supports contracts that include costs for certain actions, but that do not explicitly restrict resource operation
 - ISO is concerned that ITC rules do not incentivize the right behavior
- ISO realizes that rules for operating some resources may have been struck years ago, and may need some incremental accommodations

The ISO proposes enhancements to the co-located model

- Co-located resources may elect an operating mode that will prevent on-site storage from receiving dispatch instructions in excess of co-located renewable output
 - Resources must show documentation to the ISO to qualify for this operating mode
- The ISO will allow storage resources to deviate down in certain circumstances
 - If a storage resource elects this operating mode, solar is not curtailed, and solar is less than forecast, then a storage resource may deviate down from dispatch instructions equal to the difference between the solar forecast and actual output
 - Storage resources that deviate will not receive unique settlement treatment and will still be subject to uninstructed deviation charges

The ISO proposes enhancements to the co-located model

- Dispatch for storage may not always be less than output from the co-located resources
 - Storage resources may receive dispatch instructions to charge when there is economic curtailment of renewable resources
 - Storage resources <u>will</u> be required to follow dispatch instructions in these instances

Stakeholders requested additional functionality for pseudo tie resources

- Today pseudo tie resources must show transmission capacity for full rating of resource
 - The ISO received requests for new treatment for co-located resources
- ISO proposes to allow co-located resources with transmission less than sum of Pmax values to qualify for pseudo tied resource modeling
 - Resources must be located in the same balancing authority area
 - Aggregate capability constraint would limit combined dispatch to the resources to a value less than or equal to transmission to the ISO

NEXT STEPS

Next Steps

- All related information for the Energy Storage Enhancements initiative is available at: https://stakeholdercenter.caiso.com/StakeholderInitiatives/Energy-storage-enhancements
- Please submit stakeholder written comments on today's discussion and the storage enhancements issue paper by January 12, 2021, through the ISO's commenting tool
 - The commenting tool is located on the Stakeholder Initiatives landing page (click on the "commenting tool" icon): https://stakeholdercenter.caiso.com/StakeholderInitiatives