

Energy Storage Enhancements Second Revised Straw Proposal

July 28, 2022 Gabe Murtaugh, Storage Sector Manager

Agenda

Time	Item	Speaker
9:00-9:10	Introductions and Stakeholder Process	Brenda Corona
9:10-9:15	Changes from the RSP	Gabe Murtaugh
9:15-9:35	Reliability – AS, Operational Experience	Ali Miremadi
9:35-9:55	Reliability – Ancillary Service	Gabe Murtaugh
9:55-10:10	Reliability – Local Areas	Gabe Murtaugh
10:10-10:30	Reliability – Exceptional Dispatch	Gabe Murtaugh
10:30-11:00	Co-Located Model	Gabe Murtaugh
11:10-12:00	Next Steps	Brenda Corona

ISO Policy Initiative Stakeholder Process

We are here

The ISO received requests to discuss the addendum to the second revised straw proposal

- This stakeholder meeting will allow for discussion of the addendum to the proposal
 - Discussion will only focus on addendum, not other topics
 - Will not include other aspects of the proposal

Discussion in this meeting will include:

- Refresher on the default energy bid
- Proposed change to the day-ahead default energy bid
- Comments will be due August 4th, one week from today
 - The ISO expanded the comments template to include an area for responses to the addendum

Energy Storage Enhancements Timeline

Thur 6/30: Post Second Revised Straw Proposal

Thur 7/7: Stakeholder Meeting (RSP2)

Mon 7/18: Post Addendum

Thur 7/28: Stakeholder Meeting (Addendum)

Thur 8/4: Comments Due

Mid/Late Aug: Draft Final Proposal/Meeting

Sept: Post Final Proposal

Q4 2022: Board of Governors Meeting

DAY-AHEAD DEFAULT ENERGY BID FOR STORAGE

The ISO developed a default energy bid that follows three fundamental principles

- The default energy bid should capture costs storage resources pay to buy energy
 - This aspect is unique to storage resources
 - Costs include round trip efficiencies
- The default energy bid should capture marginal costs, including wear and tear of storage resources
 - Charging and discharging (cycling) results in cell degradation
 - Degradation results in non-performant cells which require replacement
- The default energy bid includes opportunity costs
 - This captures that storage resources can generate for a limited time prior to needing to recharge
 - Prevents storage from being discharged before best prices

The ISO is proposed the default energy bid for storage resources in the ESDER stakeholder process

$$DA Storage DEB = (MAX(En_{\delta/\eta}, 0) + \rho) * 1.1$$

$$RT Storage DEB = MAX[(MAX(En_{\delta/\eta}, 0) + \rho), OC_{\delta}] * 1.1$$

Where:

En: Estimated cost for resource to buy energy

 δ : Energy duration

 η : Round-trip efficiency

 ρ : Variable cost

OC: Opportunity Cost

Market participants observed scenarios where the first principle is not observed in the day-ahead market

- The day-ahead default energy bid is set up so that resources bidding at that price all day, would be discharged during the highest priced hours of the day
 - Result of the 24 hour optimization
 - Schedueling coordinators will not have perfect information about the day-ahead default energy bid
- Market participants observed that default energy bids could potentially mitigate resources during certain hours, and result in inefficient dispatch
 - Could happen when bids are significantly higher than default values
 - Could be prevented if the day-ahead term includes the opportunity cost
 - This was an early formulation discussed in the policy

The ISO proposes to align the day-ahead and real-time default energy bids to ensure efficient dispatch

DA Storage DEB =
$$MAX[(MAX(En_{\delta/\eta}, 0) + \rho), OC_{\delta}] * 1.1$$

RT Storage DEB = $MAX[(MAX(En_{\delta/\eta}, 0) + \rho), OC_{\delta}] * 1.1$

Where:

En: Estimated cost for resource to buy energy

 δ : Energy duration

 η : Round-trip efficiency

 ρ : Variable cost

OC: Opportunity Cost

NEXT STEPS

Next Steps

- All related information for the Energy Storage Enhancements initiative is available at: https://stakeholdercenter.caiso.com/StakeholderInitiatives/Energy-storage-enhancements
- Please submit stakeholder written comments on today's discussion and the storage enhancements issue paper by August 4, 2022, through the ISO's commenting tool
 - The commenting tool is located on the Stakeholder Initiatives landing page (click on the "commenting tool" icon): https://stakeholdercenter.caiso.com/StakeholderInitiatives

- The ISO is pleased to be hosting the Stakeholder Symposium in-person at the Safe Credit Union Convention Center in downtown Sacramento on Nov. 9 – 10, 2022
- Registration now on the Stakeholder Symposium page at: https://californiaiso.swoogo.com/2022StakeholderSymposium
- Please direct questions to symposiumreg@caiso.com

Page 13